
THE EFFECTS OF REINFORCER MAGNITUDE ON TIMING IN RATS

ELLIOT A. LUDVIG

DEPARTMENT OF COMPUTING SCIENCE,
UNIVERSITY OF ALBERTA

KENT CONOVER AND PETER SHIZGAL

CENTER FOR STUDIES IN BEHAVIOURAL NEUROBIOLOGY,
CONCORDIA UNIVERSITY

The relation between reinforcer magnitude and timing behavior was studied using a peak procedure.
Four rats received multiple consecutive sessions with both low and high levels of brain stimulation
reward (BSR). Rats paused longer and had later start times during sessions when their responses were
reinforced with low-magnitude BSR. When estimated by a symmetric Gaussian function, peak times also
were earlier; when estimated by a better-fitting asymmetric Gaussian function or by analyzing individual
trials, however, these peak-time changes were determined to reflect a mixture of large effects of BSR on
start times and no effect on stop times. These results pose a significant dilemma for three major theories
of timing (SET, MTS, and BeT), which all predict no effects for chronic manipulations of reinforcer
magnitude. We conclude that increased reinforcer magnitude influences timing in two ways: through
larger immediate after-effects that delay responding and through anticipatory effects that elicit earlier
responding.
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_______________________________________________________________________________

When anticipating a particularly exciting or
agonizing experience, we often encounter
ebbs and flows in time perception. Good
events cannot come fast enough and time
can seem to drag on while we wait, whereas
unpleasant events pounce faster than we
expect. With nonhuman animals, the realm
of the subjective remains inaccessible, but time
perception can be assayed through behavioral
tasks such as fixed-interval (FI) schedules
(Ferster & Skinner, 1957), the bisection task
(Church & Deluty, 1977), and the peak pro-
cedure (Catania, 1970; Roberts, 1981). In this
experiment, we investigated how the magni-
tude of reinforcement influences timing be-
havior in rats using a peak procedure.

A motley tapestry of results has emerged
from previous empirical studies of reinforcer
magnitude and timing. Increased reinforcer

magnitude has been variously observed as
causing earlier responding (e.g., Grace &
Nevin, 2000; Doughty & Richards, 2002), later
responding (e.g., Blomeley, Lowe, & Wearden,
2004; Staddon, 1970), or no change (e.g.,
Hatten & Shull, 1983; MacEwen & Killeen,
1991) on timing procedures. One key variable
that modulates how reinforcer magnitude
influences response timing is the frequency
of magnitude change. When magnitude is
dynamically changed from reinforcer to re-
inforcer within a session, larger reinforcers are
followed by longer pauses and delayed timing
functions. A handful of experiments have
explored this dynamic case, using random
changes in reinforcer magnitude on FI sched-
ules (Blomeley et al., 2004; Hatten & Shull,
1983; Jensen & Fallon, 1973; Lowe, Davey, &
Harzem, 1974; Staddon, 1970; see also Stad-
don, Chelaru, & Higa, 2002, Figure 7). In
these experiments, reinforcer magnitude was
manipulated by altering the duration of access
to food in a hopper (with pigeons) or the
concentration of condensed milk or sucrose
(with rats). All five studies found that larger
reinforcers were followed by longer pauses
(and lower overall response rates) on the
immediately subsequent interval. These results

The authors would like to thank Veneta Sotiropolous
for experimental help and Karen Skinazi and Anna Koop
for editing help. This research was supported by a grant to
PS from the Natural Sciences and Engineering Research
Council of Canada. Correspondence concerning this
article should be addressed to Elliot Ludvig, Department
of Computing Science, University of Alberta, Edmonton,
AB, T6G 2E8 Canada. E-mail: ludvig@ualberta.ca and
ludz13@gmail.com.

doi: 10.1901/jeab.2007.38-06

JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2007, 87, 201–218 NUMBER 2 (MARCH)

201



were mostly interpreted as reflecting an in-
hibitory after-effect of the reinforcer on
responding. Smaller reinforcers have smaller
after-effects and thus produce shorter pauses,
culminating in the extreme case of reinforcer
omission (i.e., reinforcer magnitude of zero)
that produces almost no pause (Mellon, Leak,
Fairhurst, & Gibbon, 1995; Staddon & Innis,
1969).

In contrast, chronic variation of reinforcer
magnitude across sessions produces no effect
on timing. In this situation, animals receive
the same reinforcer magnitude for multiple
consecutive sessions. Early experiments indi-
cated that chronically increasing the quantity
of reinforcement (food pellets or milk con-
centration) produced higher overall response
rates on FI schedules, but did not entirely
resolve whether the distribution of those
responses changed over the course of the
interval (Meltzer & Brahlek, 1968, 1970;
Strebbins, Mead, & Martin, 1959; see also
Bonem & Crossman, 1988). Subsequently,
Hattan and Shull (1983) explored both
dynamic and chronic manipulations of re-
inforcer magnitude in a single experiment.
In conditions where hopper duration was
varied over a range of 1 s to 8 s across sessions,
they found that pausing on an FI schedule was
clearly not influenced by reinforcer magni-
tude.

Under standard FI schedules, the reinforcer
serves a dual role: as time marker and
reinforcing stimulus. Reinforcer magnitude
may exert multiple effects on timing, through
direct after-effects on responding (as in the
dynamic results above) as well as through
changes due to the anticipation of a larger
reinforcer. Evidence for the latter comes from
work by Grace and Nevin (2000) using the
peak procedure, which effectively separates
these two potential roles for the reinforcer on
standard FI schedules. In this timing pro-
cedure, animals are presented with two types
of trials. On reinforcement trials, a stimulus is
presented and a reinforcer is available for the
first response after a given interval (i.e, an FI
schedule). Occasional probe trials, where the
stimulus remains on well past the usual time of
reinforcement and no reinforcement is avail-
able, are interspersed among the reinforced
trials. An inter-trial interval (ITI) separates all
trials. Averaged across the probe trials, many
animals show a characteristic response pattern.

Typically, response rate increases in the early
part of a probe trial, peaks around the time
reinforcement is ordinarily available, and
gradually tapers off, producing a response
curve that resembles a Gaussian distribution.

Grace and Nevin (2000) manipulated re-
inforcer magnitude on a cued peak procedure
in the context of an extensive study on
response strength and behavioral momentum.
Different-colored cues indicated the availabil-
ity of a large or small reinforcer after a fixed
interval on the reinforced trials. They found
that, on probe trials, pigeons peaked earlier
following the cue that indicated the large
reinforcer was (sometimes) upcoming. Despite
the presence of multiple reinforcer magni-
tudes in a single session, these results are the
opposite of what happens when reinforcer
magnitude is changed dynamically. The key
difference from earlier results seems to be the
separation of the two possible roles for re-
inforcement in the peak procedure—as time
marker and reinforcer outcome. In the peak
procedure, the outcome only served to re-
inforce behavior, and the time marker was not
the previous reinforcer, but a visual cue. Thus,
the reinforcer could not have influenced
subsequent responding through any immedi-
ate after-effects, and some other process must
have been at work.

These potentially conflicting sets of results
are explained if we suppose that reinforcer
magnitude influences timing in two ways:
(1) through immediate after-effects that result
in delayed responding after larger reinforcers
and (2) through anticipation of upcoming
reinforcers that results in earlier responding
before larger reinforcers. Following this dual-
role hypothesis, when a larger reinforcer serves as
a time marker, the immediate after-effects are
stronger and responding begins later. When
a larger reinforcer is predictably available,
either through the presence of a discriminative
stimulus or from the recent reinforcer history,
animals learn to anticipate this upcoming
larger reinforcer and begin responding earli-
er. The effects of unpredictable, dynamic
reinforcer changes are then caused exclusively
by the former after-effects process (Hatten &
Shull, 1983; Jensen & Fallon, 1973; Lowe et al.,
1974; Staddon, 1970), whereas Grace and
Nevin’s (2000) results are an example of the
exclusive action of the latter reinforcer-antic-
ipation process. In some situations, these
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opposing tendencies towards earlier and later
responding are placed in direct conflict. For
example, with chronic manipulation on an FI
schedule (e.g., Hatten & Shull, 1983), re-
inforcer magnitude serves as the time marker
while simultaneously being perfectly predict-
able, thereby producing both an inhibitory
after-effect and an anticipatory effect, so
little change is observed in behavior. Thus,
all three classes of previous empirical results
(dynamic, chronic, and cued) are correctly
addressed by this hypothesis. The current
study further tests the scope of this dual-
role hypothesis by exploring timing perfor-
mance in rats on a peak procedure, while
varying reinforcer magnitude across sessions.
By changing reinforcer magnitude across
sessions while separating the trials, we expect
to isolate the anticipatory effect and observe
shorter pauses with a higher reinforcer mag-
nitude.

A deeper understanding of the relation
between reinforcer magnitude and timing also
can be gleaned by using several measures of
timed behavior. Fine-grained analysis of per-
formance on the peak procedure has revealed
that individual probe trials can be effectively
modeled as three-state systems with a period of
low responding (break) followed by a period
of high responding (run) followed by a further
period of low responding (e.g., Cheng &
Westwood, 1993; Church, Meck, & Gibbon,
1994). These two transition points are termed
the start and stop times, and, along with the
other measures of temporal control on interval
schedules, sometimes yield conflicting results
(see Zeiler & Powell, 1994). Much of the
previous research on the relationship between
reinforcer magnitude and timing has used
pause or wait time as the dependent measure,
perhaps only revealing an incomplete glimpse
of the full scope of the relation between these
two variables. Gallistel, King, and McDonald
(2004) have even suggested that starts (and
presumably wait times or pauses) present
a mixture of both timed and untimed
responses, whereas stops are more precisely
timed and thus the more accurate or reliable
measure of timing. We attempted to resolve
these potential inconsistencies and lacunae
by examining four different behavioral mea-
sures of temporal control (i.e., wait times,
starts, stops, and peak times) in a single
experiment. In addition, we refined the re-

liability of the peak time measure by selecting
the strongest from several statistically derived
estimates.

The reinforcer in this experiment was
electrical stimulation of the medial forebrain
bundle—a heterogeneous group of axons
providing bidirectional links between the fore-
brain on the one hand and midbrain and
hindbrain structures on the other (Nieuwen-
huys, Geeraedts, & Veening, 1982). Rats seek
such stimulation avidly, even at the cost of
crossing an electrified grid (Olds, 1958) or
forgoing their sole daily opportunity to eat
(Routtenberg & Lindy, 1965). The effect that
entices the subject to repeatedly seek out the
stimulation is called ‘‘brain stimulation re-
ward’’ (BSR). Reinforcer magnitude can be
reliably manipulated by changing the frequen-
cy, current, or duration of the reinforcing
burst of stimulation (Gallistel & Leon, 1991;
Mark & Gallistel, 1993; Simmons & Gallistel,
1994). A novel concern that is introduced by
the use of BSR regards the generalizability of
results using this artificial reinforcer. These
potential worries are partly defused by studies
demonstrating that stimulation of the medial
forebrain bundle can compete with, summate
with, and substitute for the reinforcing effects
of natural goal objects such as sucrose solu-
tions, saline solutions, food, and water (Con-
over & Shizgal, 1994; Conover, Woodside, &
Shizgal, 1994; Green & Rachlin, 1991). A
potential interpretive difficulty is also raised
by the possible overlap of the brain substrates
for reward processing and timing. Both engage
the dopaminergic system (e.g., Maricq &
Church, 1983; Meck, 1996; Wise & Rompré,
1989; but see McClure, Saulsgiver, & Wynne,
2005; Odum, Lieving, & Schaal, 2002), and
Meck (1988) has shown that chronic, sub-
threshold intracranial stimulation along the
medial forebrain bundle produces underesti-
mation of times in a bisection procedure (we
will take this idea up in detail in the
Discussion). BSR does have an advantage over
other forms of manipulating reinforcer mag-
nitude in that the exact time and amount of
reinforcement can be precisely controlled.
There is no variability in the length of time
to collect or consume the reinforcer, as there
often is when food reinforcement is delivered
(and necessarily must be when hopper dura-
tion is manipulated). In addition, there are no
issues of satiety or deprivation level that readily
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complicate the interpretation of reinforcer
magnitude with natural reinforcers.

In this experiment, we tested the effects of
chronic presentation of two levels of reinforcer
magnitude on timing in a peak procedure. In
the peak procedure, both ITIs and the
occasional peak trial separate reinforcement
from the subsequent timed interval. Thus, the
dual-role hypothesis (after-effects vs. anticipa-
tion) makes the clear prediction that larger
reinforcers should be preceded by shorter
pauses (anticipation only). This experiment
adds to the existing literature on reinforcer
magnitude and timing in at least three
important ways. First, we bring the advantages
of the peak procedure for evaluating timing
effects to bear on the question of chronic
reinforcer magnitude changes, allowing for
a better synthesis of previously disparate
results. Second, by exploring multiple mea-
sures of timed responding, we paint a clearer,
yet more nuanced, picture of how motivational
variables influence timing. Finally, the use of
BSR as the reinforcing stimulus eliminates
varying levels of satiety and deprivation (and
thus reinforcer potency) that may act as
potential confounding variables with natural
reinforcers.

METHOD

Subjects

Four male Long Evans rats (Charles River
Breeders, St. Constant, Québec, Canada),
weighing 350–500 g, served as subjects in the
experiment. Prior to surgery, subjects were
housed in pairs, and they were switched to
individual cages following surgery. Lights were
on a 12-hr light-dark reverse cycle, and all
testing occurred during the dark phase of the
cycle. Food and water were available ad
libitum. All subjects were treated in accor-
dance with the ethical guidelines of the
American Psychological Association for re-
search with nonhuman subjects.

Apparatus

The test boxes were custom-made 34-cm
long 3 23.5-cm wide 3 60.5-cm high operant
chambers with three charcoal grey walls and
a clear plexiglass panel with a fold-down door
that served as the front wall. Two retractable
levers (5-cm wide and protruding 1.5 cm from

the wall) were located centrally on the
opposite right and left walls, 11 cm off the
wire-mesh flooring. A small cue light was
located 6 cm above each of the levers. Only
the left lever was extended and active in the
experiment. Responses were recorded with
a temporal resolution of 0.1 s by a local
computer that also controlled presentation of
stimuli and delivery of stimulation trains
through custom software.

Procedure

Surgery. Electrode implantation surgery
was performed under deep sodium pentobar-
bital anesthesia (Somnotol, 60 mg/kg, i.p.)
with atropine sulphate (0.5 mg/kg, s.c.) ad-
ministered preoperatively to help maintain
a patent airway. Bilateral monopolar elec-
trodes were stereotaxically aimed at the lateral
hypothalamus (2.8 mm posterior to Bregma,
1.7 mm lateral to the sagittal suture, and
8.4 mm below the dura mater). The stimulat-
ing electrodes were made from 000 stainless-
steel insect pins, insulated with Formvar to
within 0.5 mm of the tip, and secured to the
skull by dental acrylic. Two jeweler’s screws
also were secured to the skull to serve as the
current return for the electrodes and help
secure the electrode headstage. At the end of
the surgery, an opioid (buprenorphine,
0.05 mg/kg, s.c.) was administered for post-
operative analgesia.

Training. Rats were allowed at least two
weeks to recover from the surgery before
training began. Rats were trained by successive
approximation to press a lever for a train of
electrical brain stimulation. The stimulation
consisted of a 0.5-s train of constant current
(400 mA) cathodal 0.1-ms pulses. Training
initially began with a continuous reinforce-
ment schedule with rats receiving BSR for
every lever press, but was gradually extended
until rats were responding on a FI 10-s
schedule, whereby BSR was available for the
first response after 10 s had elapsed. All rats
readily learned to press the lever under these
contingencies within three sessions. Reinforc-
er magnitude was manipulated by changing
the stimulation frequency while maintaining
a constant current and duration of the
electrical stimulation (Conover & Shizgal,
1994; Gallistel & Leon, 1991). The stimulation
frequencies for the high and low reinforcer
magnitudes were determined independently
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for each rat. The high reinforcer was selected
as the highest frequency that maintained
reliable lever pressing without motor or
aversive side effects, and the low reinforcer
was selected as the frequency 0.05 log units
above the highest level at which rats would no
longer respond. These selections were made in
a single session after lever pressing was
established. Table 1 displays the high and
low reinforcer frequencies individually select-
ed for each rat.

Testing. The testing phase consisted of
exposing rats successively to high and low
reinforcer magnitudes, using a high–low–high
ABA reversal design. Prior to testing, all rats
first received at least 12 sessions of the peak
procedure with the high reinforcer magni-
tude. Rats were then tested repeatedly using
the peak procedure with the same reinforcer
magnitude (high or low) until, by visual
inspection of response rates, behavior was
stable for five consecutive sessions (range of
7–16 test sessions for each condition). Each
session consisted of approximately 200 trials;
every trial began with the onset of the small
stimulus light. On reinforced trials, the first
lever press that occurred after 20 s had elapsed
from light onset (FI 20 s) was immediately
followed by a train of electrical brain stimula-
tion. On peak trials, no stimulation was avail-
able and the stimulus light remained illumi-
nated for a full 60 s. Table 1 details the
number of reinforced and peak trials that
each rat received over the final 5 days of
testing with the high and low reinforcer
magnitudes. Peak and reinforced trials were
randomly intermingled, and a 5-s ITI separat-
ed every trial. Responses from the first trial of
each session were discarded because that trial
was not immediately preceded by reinforce-

ment (or a peak trial) as were all subsequent
trials.

Data analysis. Three different data analysis
methods were utilized ranging from the
patently straightforward to the moderately
complex. The first method simply measured
the wait time: the time to the first response on
a given trial. The second method involved
fitting a set of three variants of Gaussian
functions to the mean response rate for each
rat for each condition (further models were
explored, but only the three most instructive
are included in the text). In the simplest case,
all the responses emitted by a rat during the
60-s peak trials were collected in 1-s bins, and
a standard three-parameter single Gaussian
(SG) function (peak time, rate, and spread)
was iteratively fit to the midpoint of each bin,
using least mean squares. The second model
(SGR: Single Gaussian + Ramp) expanded on
this simple case by adding a linear ramp—
a popular strategy in the literature to deal with
the increase in responding late in peak trials
(see, e.g., Buhusi & Meck, 2002; Cheng &
Westwood, 1993; Matell, King, & Meck, 2004;
Roberts, 1981; Saulsgiver, McClure, & Wynne,
2006). The final fitted function decoupled
prepeak and postpeak responding by fusing
together two half-Gaussians through spline
interpolation, allowed for kurtosis, and
switched to a quadratic tail (DGKQ: Dual
Gaussian with Kurtosis and a Quadratic Tail).
This last model used the following equation
for response rate (r) before the estimated peak
time (Tp):

r ~ H |

exp { {log 1=2ð Þ
Tp { t

Tp { L1

� �2
 !K ! ð1Þ

Table 1

Details of the experimental protocol in all three conditions of the experiment. The first column
under each condition presents the pulse frequency (N) of the brain stimulation reward for each
rat (i.e., reinforcer magnitude). The remaining columns give the exact number (and percent) of
reinforced and peak trials actually received by each rat totalled over the final five sessions for
each of the three experimental conditions.

Rat

Condition 1: High reinforcer
magnitude

Condition 2: Low reinforcer
magnitude

Condition 3: High reinforcer
magnitude

N Rf. Trials Peak Trials % Peak N Rf. Trials Peak Trials % Peak N Rf. Trials Peak Trials % Peak

V1 63 734 187 20.3 50 752 179 19.2 63 744 185 19.9
V2 100 623 300 32.5 63 649 289 30.8 100 656 268 29.0
V3 79 618 319 34.0 63 645 281 30.3 79 659 285 30.2
V4 100 624 310 33.2 63 655 293 30.9 100 641 282 30.6
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where H was the peak rate parameter, t was the
trial time, K was the kurtosis parameter, and L1

was the estimated point of half-maximal
responding (prepeak). For points after the
estimated peak time, the same equation was
used with L2 in place of L1, thereby giving
independent estimates of half-maximal re-
sponding for both the rise (start) and fall
(stop) of the Gaussian curve. Finally, the latter
stages of the trial also included a term for
a rising quadratic tail (for full equations of all
models, see Appendix).

This family of Gaussian models for the data
were compared using the Akaike Information
Criterion (AIC):

AIC ~ 2k=n z ln RSS=nð Þ, ð2Þ

where k was the number of parameters, n was
the number of observations, and RSS was the
residual sum of squares (Akaike, 1974). The
AIC measures the tradeoff between the num-
ber of parameters and the variance accounted
for by a model, with lower values indicating
a relatively better model. The residuals from
all fits also were evaluated for serial autocor-
relation by means of the Durbin-Watson (DW)
statistic (Durbin & Watson, 1971). These two
evaluative measures provide complementary
information about the utility of different
models; the AIC guards against the inclusion
of an excessive number of parameters, whereas
the DW statistic guards against using not
enough parameters to satisfactorily account
for the data. On the basis of these two
evaluative measures, the best model was
selected.

Finally, the third data analysis method
focused on responding over the course of
individual peak trials. Each peak trial was
modeled as a ‘‘break-run-break’’, three-state
system: Rats were assumed to start with a low
rate of responding, display a burst of rapid
responding in the middle of the trial, and
return to another low rate of responding for
the remainder of the trial (Cheng & West-
wood, 1993; Church et al., 1994; Gallistel et al.,
2004; Schneider, 1969). Two transition points
(‘‘start’’ and ‘‘stop’’ times) separating the
lower and higher rates of responding were
identified for every peak trial. These points
were determined by exhaustive search for the
two response times that maximized the metric
t1(r 2 r1) + t2(r2 2 r) + t3(r 2 r3), where t1, t2,

and t3 were the times from the beginning of
the trial to the start point, between the start
and stop points, and from the stop point to the
end of the trial, respectively; r1, r2, and r3 were
the corresponding response rates, and r was
the overall response rate for that trial (Church
et al.). The only additional constraint was that
the start point necessarily preceded the stop
point.

All simple computations (e.g., means) were
calculated in Microsoft Excel, and more
advanced statistical tests and fits (e.g., multi-
factor ANOVAs) were conducted using Statis-
tica 6.0 (StatSoft Inc., Tulsa, OK) and MA-
TLAB (The MathWorks, Natick, MA). An
alpha level of .05 was selected for all inferential
statistics.

RESULTS

Wait-time results. Our first analysis ap-
proach focused on the wait time: the time to
the first response in a trial. Figure 1 depicts
the mean wait time for low- and high- re-
inforcer conditions, plotted separately accord-
ing to whether the previous trial was a rein-
forced or peak trial. Regardless of the status of
the previous trial, all rats paused longer when
reinforcement was the lower magnitude BSR.
The effect was reversible as pausing was
shorter for both high-reinforcer conditions
for all 4 rats. A two-way (Reinforcer Magnitude
3 Trial Type), repeated-measures ANOVA
corroborated the reliability of these visible
trends. There was a main effect of reinforcer
magnitude, F(2,6) 5 24.83, p , .01, but no
effect of trial type, nor an interaction (both ps
. .05). This lack of an interaction is notable
because it confirms that the peak procedure
did limit the influence of the immediately
previous reinforcer as a time marker, success-
fully separating the after-effects of reinforce-
ment from the anticipatory effects. Planned
comparisons confirmed that wait times during
the two iterations of the high-reinforcer
condition were not significantly different from
one another, t(3) 5 1.14, p . .30, and that the
two high-reinforcer conditions produced re-
liably shorter wait times than the low-reinforc-
er condition, t(3) 5 9.61, p , .01.

Peak fits. Our second analysis method in-
volved fitting a family of Gaussian models to
the mean response rates. The three models
were, from fewest to most parameters: Single
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Gaussian (SG), Single Gaussian summed with
a linear Ramp function (SGR), and Dual
Gaussian with a single Kurtosis parameter plus
a Quadratic tail (DGKQ). Figure 2 plots the
mean response rate as a function of time into
the peak trial for each of the rats in all three
conditions. The curves are the fits from the
best Gaussian model: the DGKQ model (see
below). Results from individual animals are
plotted in separate columns, and results from
the three reinforcer conditions are plotted on
separate rows. With both high (top and
bottom rows) and low (middle row) reinforcer
magnitudes, all animals showed a very clear
pattern of responding. Rats began responding
at a lower rate, increased responding through-
out the first part of the trial, and peaked at
around the time that BSR would sometimes be
available (20 s: dashed line) before gradually
tapering off. There was a second increase in
responding in the final few seconds before the
trial ends—a common finding with fixed peak
and intertrial times (see Church, Miller, Meck,

& Gibbon, 1991). For all three Gaussian
models examined, the fitted functions
matched the obtained response rates extreme-
ly well, accounting for a high proportion of the
variance for all 4 rats (all R2 values . .93).

To select the most appropriate Gaussian
model for this dataset, we examined two
statistics comparing the relative validity of the
three different Gaussian models. Figure 3
plots the Akaike Information Criterion (AIC)
and Durbin-Watson statistic (DW) for each of
the Gaussian models. As illustrated in Fig-
ure 3A, the DGKQ model received the best
(lowest) AIC value. There was a general trend
across the models that a greater number of
parameters improved the AIC-measured trade-
off between model complexity and goodness
of fit. The second panel (Figure 3B) depicts
the DW statistic for the same set of models.
Again, there was a gradual improvement with
the more complex models (as might be
expected because there is no penalty for
additional parameters in the DW statistic).
For all three models, however, the majority of
fits still showed significant residual autocorre-
lation, mostly due to the rise at the end of peak
trials. The SG model, in particular, provides
such a comparatively poor fit to the data for
both statistics (AIC and DW) because that is
the only model considered that cannot ac-
count for the rising tail at all (see Figure 2).

On the basis of these two statistics, we
selected the DGKQ model as the most
appropriate for this dataset because it had
both the best (lowest) AIC values and the best
DW statistics. Figure 4 presents parameter
results for the peak rates, peak times, plus
start and stop half-max times, including 95%
confidence intervals, for the DGKQ model (cf.
Table 2). The latter two half-max measures are
the times at which the fitted Gaussian has risen
(start) or fallen (stop) to half of its maximal
value. The confidence intervals are the 2.5 and
97.5 percentiles of fits to 1000 datasets
generated by repeatedly randomly resampling
the residuals. There was a very large effect of
reinforcer magnitude on peak rates (bottom
row in Figure 4); rats responded much more
vigorously on peak trials during sessions with
the larger reinforcer magnitude. The start
half-max times (open squares of upper panel
in Figure 4) showed a moderate effect of
reinforcer magnitude with both iterations of
the high reinforcer producing earlier start

Fig. 1. Mean wait time (s) as a function of reinforcer
magnitude and previous trial type. For data in the left
columns, the previous trial was reinforced, and for data in
the right columns, the previous trial was nonreinforced
(peak).
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half-max times in 3 of 4 rats; only the second
iteration of the high reinforcer for Rat V3 was
similar to the low- reinforcer condition. The
peak times and stop half-max times (solid

squares and open triangles, respectively, in
Figure 4) both showed no consistent trends.
The peak times from 2 rats (V1 and V4) and
the stop half-max times for 1 rat (V4), were
possibly a little shorter for the high-reinforcer
results, but there was no consistent pattern
across the four datasets. The parameters
represent different measures (rates and times)
and are plotted on different ordinates, but the
confidence intervals give a good visual context
for evaluating the relative size of the effects.

To evaluate the statistical reliability of the
visible trends in the fitted parameters and
compare with results from other models,
Table 2 presents comparative statistics for the
fitted parameters from the three Gaussian
models. The table contains the p values from
a series of paired t tests (df 5 3) comparing the
average of the two high-reinforcer conditions
against the low-reinforcer condition for peak
times, peak rates, and start and stop half-max
times (see Figure 4). Bolded values are signif-
icant at an alpha level of .05. The clearest
pattern emerged from the results of the fitted
peak rates. As can be seen in Figures 2 and 4 as
well as Table 2, all 4 rats showed significantly
higher peak rates during both high-reinforcer
conditions than during the low-reinforcer

Fig. 2. Mean response rate as function of time into peak trial for each rat in each reinforcer condition in 1-s bins.
Each column presents data from an individual rat. Each row presents averaged data from the final five sessions for each of
the three levels of reinforcer magnitude (High 1, Low, and High 2). The curves plot the result from the best-fitting
Gaussian model (DGKQ: Dual Gaussian with a Kurtosis factor and Quadratic tail; see Methods) to the response-rate data.
The dotted line in each plot represents the time at which reinforcement was available to rats on nonpeak trials (20 s).

Fig. 3. Evaluative criteria comparing the three differ-
ent Gaussian models. (A) Akaike Information Criteria
(AIC) calculated across all rats and all reinforcer condi-
tions for each of the models for both datasets. Lower AIC
scores indicate better models. Note that the y-axis is
inverted. (B) Durbin-Watson (DW) statistic calculated
independently for each rat, averaged across reinforcement
condition. Points below the dashed line denote significant
autocorrelation at a .05 alpha level. SG 5 Single Gaussian;
SGR 5 Single Gaussian plus linear Ramp; DGKQ 5 Dual
Gaussian with a Kurtosis parameter plus Quadratic tail.
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condition. This difference offers independent
corroboration that our manipulation of the
stimulation frequency did indeed alter re-
inforcer magnitude in the anticipated direc-
tion. The start and stop half-max times also
produced straightforward results; with all
three models, start times were reliably earlier
with a larger reinforcer magnitude and stop

times were unaffected. The peak times pre-
sented the most interesting and variable case.
For the two single Gaussian models (SG and
SGR), there was a significant effect of re-
inforcer magnitude on peak time, with higher
reinforcer magnitude producing earlier peaks.
With the best model (DGKQ), this effect was
muted and there was no reliable effect of
reinforcer magnitude on peak times. Thus, in
this instance, the relative inflexibility of the
single Gaussian models produced an artifactu-
al result for peak times that was sharply
reduced when a better model was fit to the
dataset.

Single-trial analyses. The results from the
analysis of responding on individual trials
matched the wait-time and peak-fit results
quite strongly. Figures 5 and 6 present the
results from fitting the individual trials as
a three-state system with two periods of low
responding surrounding a period of higher
responding. The frequency distribution for
the two transition points between low and high
responding—the start and stop times—are
plotted separately for each rat in Figure 5.
For all 4 rats, start times clustered around 10–
15 s into the trial and stop times clustered
around 30 s. There seemed to be a tendency
for the start time distributions to be shifted to
the right (later) with the low reinforcer
magnitude (middle row), but the stop time
distributions were largely unaffected. Figure 6
confirms this observation by plotting the
median start and stop times, averaged across
all 4 rats. Sessions with the lower reinforcer
magnitude clearly had later start times, but
stop times were not influenced by reinforcer
magnitude. Two one-way repeated-measures
ANOVAs provided statistical corroboration for
this finding; there was a main effect of
reinforcer magnitude on start times, F(2,6) 5
11.82, p , .01, but no effect of reinforcer
magnitude on stop times F(2,6) 5 1.80, p .
.20. A planned comparison confirmed that

Fig. 4. Fitted peak times, peak rates plus start and stop
half-max times as a function of reinforcer magnitude for
each rat from the model that best fit the data (DGKQ:
Dual Gaussian with a single Kurtosis parameter and
a Quadratic tail). Error bars are 95% confidence intervals
as calculated by a bootstrapped resampling method. Note
that the parameters are plotted on different y-axes.

Table 2

Statistical results (p values) from a series of paired t tests (df 5 3) comparing averaged
performance on the two high-reinforcer conditions versus the low-reinforcer condition. Bolded
values are significant at an alpha level of .05.

Model Peak Rate Peak Time Start Half-max Stop Half-Max

Single Gaussian (SG) .005 .03 .009 .08
Single Gaussian + Ramp (SGR) .006 .03 .006 .15
Dual Gaussian with Kurtosis + Quadratic Tail (DGKQ) .02 .15 .008 .24
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start times with the low reinforcer magnitude
were later than the two conditions with the
high reinforcer magnitude, t(3) 5 9.80, p .
.01.

DISCUSSION

In this experiment, we established that
chronic variation of BSR magnitude substan-
tially changed some measures of rats’ timing
performance in a peak procedure. Wait and
start times were both significantly shorter with
a high reinforcer magnitude than with a low
reinforcer magnitude. Stop and peak times,
however, were not reliably influenced by the
reinforcer magnitude manipulation. These
results provide further evidence for one prong
of the dual-role hypothesis for reinforcer
magnitude effects on timing suggested earlier:
When a larger reinforcer is predictably avail-
able, animals start responding earlier in the
interval (anticipation effects). These results
pose a considerable challenge to the three
most popular theoretical accounts of timing
(SET: Scalar Expectancy Theory, Gibbon,
1977; MTS: Multiple Time Scale model,
Staddon & Higa, 1999; and BeT: Behavioral
Theory of Timing, Killeen & Fetterman, 1988),

Fig. 5. Frequency distributions of start and stop times from the single-trial analysis. Each row plots the cumulated
frequency in 1-s bins of starts (dashed curves) and stops (solid curves) across the final five sessions with each reinforcer
magnitude condition (High 1, Low, and High 2). The dotted vertical line represents the time at which reinforcement
became available to rats on nonpeak trials (20 s).

Fig. 6. Median start and stop times (+ SEM) from the
single-trial analysis, averaged across all 4 rats at each
reinforcer magnitude condition (High 1, Low, and
High 2).
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which all predict no effect of chronic re-
inforcer magnitude manipulations.

The major theoretical approaches to timing
have varied widely in their treatment of the
relationship between motivation and timing,
spanning the range from complete indepen-
dence to complete interdependence, but their
predictions for chronic reinforcer magnitude
effects on timing are identical: no effect. SET
(Gibbon, 1977), for example, explicitly elim-
inates all motivational variables from consid-
eration in determining performance on a tim-
ing task. According to SET, all reinforcing
stimuli generate different levels of expectancy
or ‘‘hope’’ (H) determined by their motiva-
tional salience (e.g., magnitude of reinforcer
or level of deprivation). This general expec-
tancy for a reinforcer is transformed into an
immediate expectancy, h(t), based on the
expected delay to reinforcement delivery (x)
in a hyperbolically increasing fashion: h(t) 5
H /(x-t). In the model, behavior is determined
by a ratio comparison between the immediate
expectancy at a given point in time, h(t), and
the undifferentiated expectancy, h(0), from
the beginning of a trial:

r tð Þ~ h tð Þ
h 0ð Þ~

H= x { tð Þ
H=x

~
1

1 { t=x
w b: ð3Þ

Whenever the expectancy ratio, r(t), surpasses
a threshold (b), responding is initiated. Note
that the motivational parameter (H) appears
in both numerator and denominator of this
ratio, thus cancelling out and playing no role
in the initiation or maintenance of timed
responding (see also Gallistel & Gibbon,
2000). As a result, for our experiment, SET
makes the straightforward prediction that
reinforcer magnitude should have no effect
on timing in a peak procedure—a prediction
that is not borne out by the data from this
experiment. This claim about motivational
impotency in timing does draw some empirical
support from Roberts (1981) who found that
manipulating the probability of reinforcement
(a motivational factor) altered the peak re-
sponse rate without changing the peak re-
sponse time (cf. Grace & Nevin, 2000).

A potential elaboration of SET that might
explain reinforcer magnitude effects observed
in this experiment is the partial-reset hypoth-
esis (Mellon et al., 1995). To explain re-
inforcement omission effects (short pauses

after omitted reinforcers), the timing mecha-
nism (accumulator) is assumed to be only
partially reset by the omitted reinforcers. As
a result, the timing function is shifted earlier
on subsequent trials, and shorter pausing
ensues. Modifying the partial-reset hypothesis,
so that smaller reinforcers also only partially
reset the accumulator, adequately explains
results from dynamic schedules when shorter
pauses follow smaller reinforcers (e.g., Blome-
ley et al., 2004; Lowe et al., 1974; Staddon,
1970). For our results, however, this hypothesis
fails. A partial reset following a low reinforcer
would result in earlier responding following
the low reinforcer—the opposite of what we
find with chronic reinforcer magnitude ma-
nipulation in the peak procedure. Further
elaboration of the theory would be required to
account for these results (see below for
a plausible suggestion).

The MTS habituation model of interval
timing, in contrast, takes reinforcer magnitude
as the constitutive input variable to the
memory traces that lie at the core of the
theory (Staddon et al., 2002; Staddon & Higa,
1999). Behavior in MTS is determined by
a decaying memory trace (through a sum of
exponentials) that initiates responding once it
passes below a threshold. This threshold is
dynamically adjusted based on the remem-
bered trace level of previous reinforcers.
According to the model, a larger-than-usual
reinforcer results in a larger memory trace that
decays below the response threshold at a later
time, thus initiating responding at a later time.
This prediction of the model is supported in
dynamic environments—where the reinforcer
magnitude changes regularly—when a larger-
than-usual reinforcer results in greater pausing
and a delayed timing function (e.g., Staddon,
1970). With repeated presentations of the
same (larger) reinforcer magnitude, as in our
experiment, however, the threshold recali-
brates to the new remembered reinforcement,
and the reinforcer magnitude effect should
mostly disappear. Thus, like SET, MTS pre-
dicts no effect on timing for chronic reinforcer
magnitude manipulations.

The third major timing account, BeT (Kill-
een & Fetterman, 1988), also ties its core
assumption to properties of the reinforcement
received by the animal. According to BeT,
animals pass through a series of sequential
states driven by a Poisson pacemaker. These
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states become associated with adjunctive beha-
viors, thus providing the substrate for timed
responding. As opposed to SET, the rate of the
pacemaker in BeT is tied directly to the overall
rate of reinforcement. Higher reinforcement
densities due to increased frequency or mag-
nitude of reinforcement should result in
a faster pacemaker rate, though the empirical
evidence for the relation between reinforcer
magnitude and pacemaker rate is mixed (see
Bizo & White, 1994; Fetterman & Killeen,
1991; MacEwen & Killeen, 1991). For the
current experiment, when rats are first ex-
posed to the low reinforcer magnitude condi-
tion (Phase 2), BeT clearly predicts longer
wait, peak, and stop times. As the animal is
repeatedly exposed to the smaller magnitude
reinforcer, however, reinforcement becomes
associated with an earlier behavioral state and
the timing function should recalibrate to the
new pacemaker rate, eliminating the initial
increase in the timing measures. If the
assumption is made that the recalibration is
incomplete (perhaps due to insufficient expo-
sure to the new reinforcer magnitude), then
BeT does correctly predict the increase in start
and wait times (see Fetterman & Killeen,
1995). Incorporating the further (unsubstan-
tiated) assumption that later sequential states
recalibrate more quickly would even allow the
model to account for the unchanged peak and
stop times. The converse set of predictions
holds true for the reexposure to the high
reinforcer magnitude (Condition 3). Our
empirical data do not allow us to adequately
address the question of recalibration rates.

Despite wide variation in the core assump-
tions about the relationship between motiva-
tion and timing, all three models assume
a veridicality in timing behavior that chronic
variations in reinforcer magnitude should not
influence (beyond transient effects). Either the
models screen off motivational effects altogeth-
er (SET) or else the models suppose a recalibra-
tion process that eventually eliminates the
motivational effects (MTS and BeT). From
our results, there is mixed support for this
shared assumption. Some measures of timing
(pauses and starts) indeed were influenced by
reinforcer magnitude, but stop and peak times
were not. On the basis of different results from
the peak procedure, this relative invariance of
stop times led Gallistel et al. (2004) to suggest
that stop times are the best measure of timing

on the peak procedure. This decision about
what measure is best certainly depends very
strongly on theoretical predispositions. If the
view is held that motivation does not influence
timing variables (e.g., SET), then the ever-
invariant stop times are clearly the purest
measure of timing behavior. If the view is held
that motivational factors should influence
timing (e.g., BeT), then the best measures of
timing are those (pauses, starts, or derived
pacemaker rates) that are influenced by moti-
vation and not the less-sensitive stop time.

One way to reconcile this dataset with the
two theories that incorporate thresholds to
determine response times (MTS and SET) is to
assume that there are two independent thresh-
olds to start and stop responding on peak
trials. Motivational factors (e.g., reinforcer
magnitude) influence the threshold to start
responding, but not the threshold to stop
responding on peak trials. According to this
view, chronic exposure to low reinforcer
magnitude decreases the threshold below
which the decaying memory trace must dip
or, equivalently, increases the threshold above
which the expectancy ratio must rise before
responding is initiated, resulting in consider-
ably longer pauses and later start times
(Figures 1, 5, and 6). Moreover, the small,
but significant effect of reinforcer magnitude
on peak times (Table 2) with single Gaussian
models is readily explained by this two-
threshold idea. When peak time is estimated
by a symmetric model fit to the response
function, the peak time effectively becomes
tied to the start and stop thresholds, so if
reinforcer magnitude affects only one thresh-
old, the whole fitted function shifts and
illusory peak shifts will be produced. Such
a two-threshold idea has also gained support in
the context of SET from analyses of the
patterns of variance and covariance for starts
and stops in the peak procedure (Church et
al., 1994; Gibbon & Church, 1990).

Reinforcer magnitude can then be taken as
influencing the start threshold in the two
manners hypothesized in the Introduction:
through inhibitory after-effects and anticipa-
tory effects. When reinforcer magnitude is
changed unpredictably within sessions (dy-
namic) and the reinforcer serves as the time
marker (Blomeley et al., 2004; Hatten & Shull,
1983; Staddon, 1970), then the inhibitory
after-effects of reinforcement increase (for
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SET) or decrease (for MTS) the threshold for
responding, and later pauses ensue after larger
reinforcers. The MTS model already accounts
for these dynamic results without any addi-
tional assumptions (Staddon et al., 2002);
adding the assumption of a start threshold
that is altered by reinforcer magnitude is
necessary for MTS in the chronic case, but
serves to even further amplify the already
predicted reinforcer magnitude effects on
dynamic schedules. When, as in our experi-
ment, reinforcer magnitude is changed across
sessions but does not also serve as the time
marker, anticipation of the larger reinforcer
decreases (for SET) or increases (for MTS) the
threshold for response initiation, resulting in
shorter wait and start times (cf. Grace & Nevin,
2000). This tendency towards earlier respond-
ing also explains why larger reinforcer magni-
tudes result in poorer performance on DRL
schedules, another putative timing procedure
(Doughty & Richards, 2002). An analogous
dual-role mechanism (immediate after-effects
vs. anticipatory effects) has been proposed to
account for the effects of interval duration on
pausing on certain types of cyclic-interval
schedules (Ludvig & Staddon, 2004, 2005).

An empirical question remains outstanding:
What would the effect of reinforcer magnitude
on timing be if the reinforcer were dynamically
and unpredictably varied but did not also serve
as the time marker? Presumably, in that
instance, there would be neither after-effects
of the reinforcer nor any anticipatory effects,
and thus no influence of reinforcer magnitude
on timing. No results from such a procedure
have been reported, possibly because the
anticipated result is a null effect.

One potential alternate explanation for the
effects of reinforcer magnitude on the wait
and start times in this experiment might be
that BSR shares the same biological substrate
as timing (Meck, 1988). According to this view,
the electrical stimulation directly drives the
internal clock that underlies time perception,
and thus changes in responding are not due
to the reinforcer magnitude effects. Indeed,
Meck showed that subthreshold trains of
stimulation in the medial forebrain bundle
shifted the psychometric function for time
earlier—interpreted as an increase in the
speed of an internal clock. Following that
logic, in our experiment, perhaps the higher
frequency trains of electrical stimulation di-

rectly increased clock speed (Meck). Three key
reasons mitigate such a possibility. First, even if
stronger trains of BSR were inducing the clock
to run faster, presumably that effect would be
transient (cf. Maricq & Church, 1983; Meck,
1996) and would not persist across sessions to
influence the steady-state behavior that we
observed. Furthermore, Meck (1988) had the
subthreshold stimulation occurring through-
out the timed interval, whereas in this exper-
iment, the train of electrical stimulation was
restricted to the end of the interval. It is not
clear how such a restricted burst of stimulation
could drive the clock throughout the interval.
Finally, if clock speed were indeed directly
altered by BSR magnitude, then all measures
of timing should be equally affected, including
the stop and peak times, which did not change
reliably in this study.

A more plausible relation between the
results of Meck (1988) and the present
experiment would actually be the converse:
The subthreshold stimulation that Meck gave
enhanced the reinforcer, and the anticipation
of larger reinforcers led to earlier responding
and a shifted psychometric function. This
suggestion gains support from previous results
that have established that natural reinforcers
and BSR can summate (Conover & Shizgal,
1994; Conover, Woodside, & Shizgal, 1994). In
addition, although the subthreshold stimula-
tion in Meck’s experiment did not directly
overlap with the food reinforcer, similar
stimulation does produce longer-lasting in-
creases in tonic dopamine levels (Hernandez
et al., 2006), which could certainly have
mediated an enhanced reinforcer a few sec-
onds later. The question then becomes: Could
the rats have learned to anticipate these larger
reinforcers in the Meck experiment? If the
subthreshold stimulation could also have
served as a discriminative stimulus, then that
provides a plausible mechanism for rats to
know when a larger (summated) reinforcer is
upcoming. There is evidence that reinforcer
magnitude (Bonem & Crossman, 1988), time
intervals themselves (Ludvig & Staddon, 2004,
2005), and even electrical stimulation of the
nearby ventral tegmental area (Druhan, Fibi-
ger, & Phillips, 1989; Druhan, Martin-Iverson,
Wilkie, Fibiger, & Phillips, 1987a, 1987b) can
serve as discriminative stimuli, making it highly
probable that rats can use subthreshold
electrical stimulation of the MFB as a discrim-
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inative stimulus for reinforcer magnitude.
Such a combined discriminative stimulus/
reinforcer enhancer role for subthreshold
stimulation would account for Meck’s results
without resorting to an internal clock or
modified pacemaker that shares the same
biological substrate as BSR.

An important general lesson from the curve-
fitting results is that the peak time is a poten-
tially biased measure whenever a single Gauss-
ian model is fit to peak-procedure data. Any
manipulation that significantly alters only one
end of the response distribution (before or
after the peak), even if it does not actually alter
the peak time, will create a spurious peak shift
(cf. Knealing & Schaal, 2002). Numerous
papers have relied on the single Gaussian
summed with a linear ramp (SGR) model for
quantifying peak shifts in the peak or related
procedures (for a representative sampling, see
Buhusi & Meck, 2002; Cheng & Westwood,
1993; Matell et al., 2004; Roberts, 1981;
Saulsgiver et al., 2006). For example, Sauls-
giver et al. presented data on how amphet-
amine affects responding in the peak pro-
cedure. Using the SGR model, they found
a leftward shift in peak times (i.e., earlier
peaks) due to amphetamine, but attributed
that shift mostly to a rate-dependency effect,
whereby the rate of responding early in the
trial was increased, but later responding (after
the peak) was unaffected. Using the dual
Gaussian (DGKQ) approach detailed here
would have allowed them to better dissociate
effects on early responding (i.e., start times)
from the effects on peak times. Furthermore,
the strong similarity of those results and those
of the current experiment hint that dopamine
effects on timing may be due to increased
reinforcer magnitude with dopaminergic ago-
nists and not necessarily due to direct effects
on timing. Even more problematic, however,
are the cases where peak shifts as derived from
the SGR model are taken as constitutive data
for psychological interpretations of timing, as
is the case with much recent data from the so-
called ‘‘gap’’ procedure—where the stimulus
is interrupted during peak trials (e.g., Buhusi
& Meck, 2002; Buhusi, Perera, & Meck, 2005).
McClure et al. (2005) also reached similar
conclusions when comparing fitted functions
for evaluating performance on a different
timing procedure (the bisection task). In
future experiments with the peak or related

procedures, it would be wise to exercise
caution when interpreting shifts in peak times
derived from single Gaussian models and to
use appropriate statistical procedures when
evidence of asymmetry is seen.

As Zeiler and Powell (1994) showed, the
conclusions one draws about timed behavior
in animals depend strongly on the dependent
measures examined (see also McClure et al.,
2005). Focussing on stop times alone, re-
inforcer magnitude does not seem to influ-
ence timing. Shifting focus to start and wait
times reveals that reinforcer magnitude does
indeed influence timing in two ways: later
responding following larger reinforcers and
earlier responding before larger reinforcers.
These results present a challenging, though
not irreconcilable, dataset for the major
theories of timing. The best explanation for
this pattern of results lies in supposing that
reinforcer magnitude plays a dual role in
influencing timing, producing both immedi-
ate after-effects and anticipatory responses.
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APPENDIX A

Full equations for all six models fitted to the peak datasets are presented below. Only Models
1, 2, and 5 are extensively discussed in the text and figures, but similar conclusions regarding the
superiority of Model 5 (DGKQ) hold even with all six models.

Model 1. Single Gaussian (SG)

Where:
t is the mid point of the time bin of the trial time (s),
r is the response rate (responses / s),
H is the maximum response rate (responses / s),
L1 is the start half-max: the time when the Gaussian has risen halfway to its peak value (s),
L2 is the stop half-max time: the time when the Gaussian has fallen halfway from its peak

value (s),
log() is the natural logarithmic function (base e).

r ~ H | exp log 1=2ð Þ L1 z L2 { 2 | t

L1 { L2

� �2
 !

ðA1Þ

Model 2. Single Gaussian summed with a linear Ramp function (SGR)

Where the Single Gaussian variable and parameter definitions are continued for this model and:
R is the slope of the linear ramp function with an intercept of zero (responses / s).

r ~ H { R |
L1 z L2

2

� �� �
| exp log 1=2ð Þ L1 z L2 { 2 | t

L1 { L2

� �2
 !

z R | t
(A2)
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Model 3. Single Gaussian with a Quadratic tail (SGQ)

Where the Single Gaussian variable and parameter definitions are continued for this model and:
Tq is the point in time at which the Single Gaussian is joined to the Quadratic (s),
S is the coefficient for the quadratic (responses / s).

r ~ H | exp log 1=2ð Þ L1 z L2 { 2 | t

L1 { L2

� �2
 !

; for t ƒ Tq

r ~ S | t { Tq

� �2
z H | exp log 1=2ð Þ

L1 z L2 { 2 | Tq

L1 { L2

� �2
 !

; for Tq v t

ðA3Þ

Model 4. Dual Gaussian with a Quadratic tail (DGQ)

Where the Single Gaussian with a Quadratic tail variable and parameter definitions are
continued for this model and:

Tp is the peak time for the Single Gaussian (s).

r ~ H | exp log 1=2ð Þ
Tp { t

Tp { L1

� �2
 !

; for t ƒ Tp

r ~ H | exp log 1=2ð Þ
Tp { t

Tp { L2

� �2
 !

; for Tp v t ƒ Tq

r ~ S | t { Tq

� �2
z H | exp log 1=2ð Þ

Tq { Tp

Tq { L2

� �2
 !

; for Tqv t

ðA4Þ

Model 5. Dual Gaussian with a single Kurtosis parameter plus a Quadratic tail (DGKQ)

Where the Dual Gaussian with a Quadratic tail variable and parameter definitions are continued
for this model and:

K is the kurtosis parameter (dimensionless).

r ~ H | exp { {log 1=2ð Þ
Tp { t

Tp { L1

� �2
 !K !

; for t ƒ Tp

r ~ H | exp { {log 1=2ð Þ
Tp { t

Tp { L2

� �2
 !K !

; for Tp v t ƒ Tq

r ~ S | t { Tq

� �2
z H | exp { {log 1=2ð Þ

Tp { Tq

Tp { L2

� �2
 !K !

; for Tqv t

ðA5Þ
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Model 6. Dual Gaussian with Dual Kurtosis parameters plus a Quadratic tail (DGDKQ)

Where the Dual Gaussian with a Quadratic tail variable and parameter definitions are continued
for this model and:

K1 is the kurtosis parameter for times less than the peak time, Tp (dimensionless),
K2 is the kurtosis parameter for times greater than the peak time, Tp (dimensionless).

r ~ H | exp { {log 1=2ð Þ
Tp { t

Tp { L1

� �2
 !K1

 !
; for t ƒ Tp

r ~ H | exp { {log 1=2ð Þ
Tp { t

Tp { L2

� �2
 !K2

 !
; for Tp v t ƒ Tq

r ~ S | t { Tq

� �2
z H | exp { {log 1=2ð Þ

Tp { Tq

Tp { L2

� �2
 !K2

 !
; for Tqv t

ðA6Þ

218 ELLIOT A. LUDVIG et al.


